Workshop on New Visions for Networking Research and Applications March 12-14, 2001

May 11, 2001 Mari Maeda DARPA

- Goal: to stimulate bold thinking in networking research; to explore objectives that might be realized 10-20 years out; to identify the steps to get there
 - -what does the research community consider challenging & important?
 - -map them into mission goals/visions
 - -develop new programs
- White Paper Solicitation (approx 80 papers)
- 160 invited participants (university, industry, feds; diverse group)

Workshop Structure

- Day 1: Panel Briefs & Discussions around three broad themes:
 - -Adaptive networking
 - -Infrastructureless networking
 - -Heterogeneous networking
- Day 2: Breakout Disscussions around five scenarios
 - -crisis management
 - -networked medical care
 - -collaborative research
 - -scientific research: high energy physics
 - -military tactical : network of sensors & robots
 - -logistics: pervasive, global inventory/tracking system
- Day 3: Readouts from Breakout Leaders

Example White Paper Titles

- Disposable Networks: Automating Network Management for Short-Lived Networks
- Quantum Network Protocols
- Large Scale Networking for Particle Physics
- Architectural Implications of Unlimited Bandwidth
- Thought Communications
- Adaptive Networking Architecture for Service Emergence
- Distributed Real Time Control over Large Scale Networks
- Autoconfigurable Addressing and Routing Protocols for Large Scale Networks
- Accurate Target Definition Enabled by High Speed Networks
- Ubiquitous Reconfigurable Wide Area Sensor/Actuator Networks
- Towards A Ubiquitous Disaster Information Network
- Moving Towards Massively Scalable Video-Based Sensor Networks
- Toward Disappearing Reality

no timeless jargons :

self-organizing, auto-configuring, ad-hoc, adaptive, scalable, secure, seamless

What we were looking for *specific* ideas:

Long Term Vision –20 yrs out

What can we do in the next 5 years

Examples, Metrics, Possible Approaches

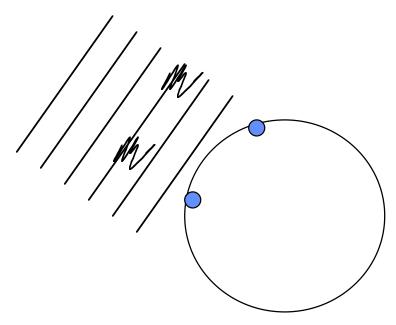
Is it extremely challenging, technically? At the same time, is it feasible?

Two Threads

High-Capacity

- -networks enabling distributed, real-time,
 collaborative scientific research
- -military: global reachback

Pervasive, Fine-Grained


-military: networking of sensors, robots, to support logistics, autonomous manifest

Networks to help Scientific Research

- High-energy nuclear & particle physics
- 1 network engineer = 2 physics postdocs
- highly stressed, challenging environment
- characterized by compute-intensive, dataintensive, bw-intensive, distributed collaboration, multi-national-admin domains
- creative & innovative community
- generic approach vs. vertically integrated solutions

Networks to help Scientific Research

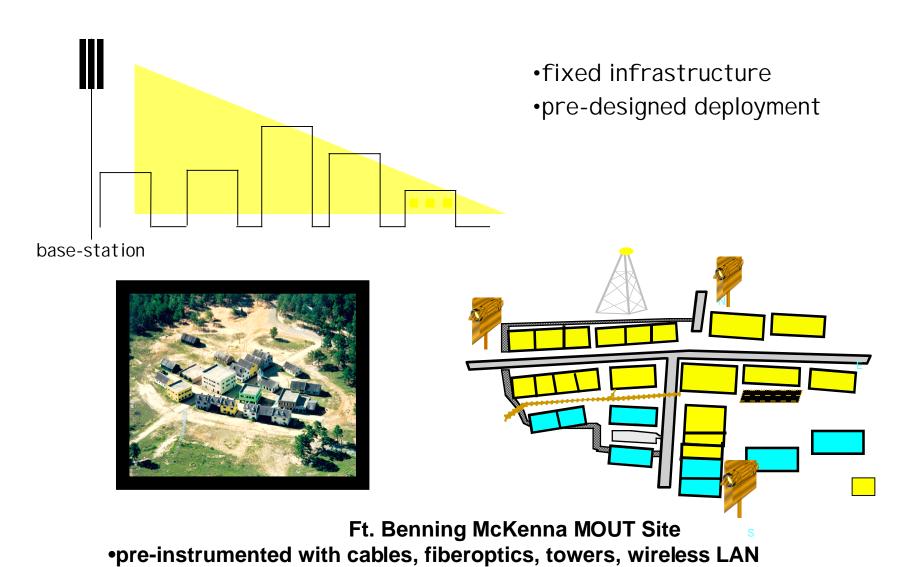
- Radio Astronomy and Networked Real-Time VLBI (Very Long Baseline Interferometry)
- Many national and international VLBI sites
- Today, all use non-real-time interferometry (timestamp, transfer data & correlate)

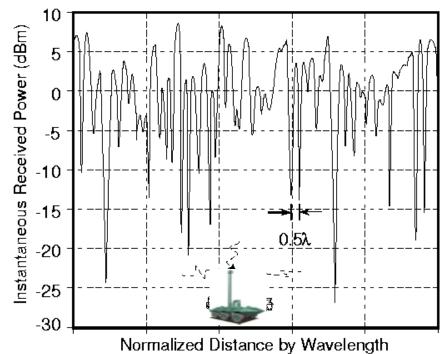
- •study of sources, study of geodetic features, high-precision time
- •real-time requires Gbps+ between VLBI sites
- •enable real-time experimentation (real-time verifications, study of transients)
- •ALMA: 120 Gbps

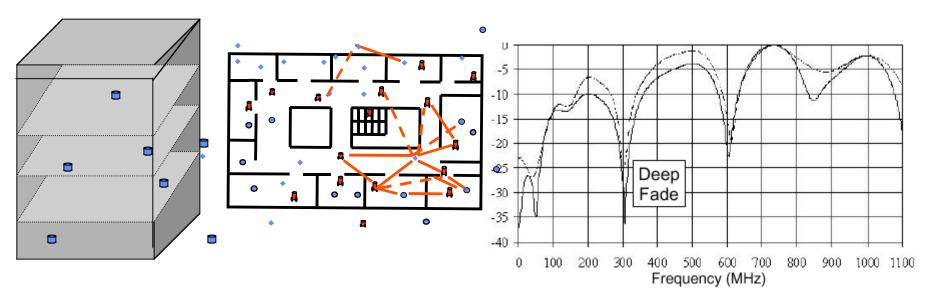
Fine-Grained

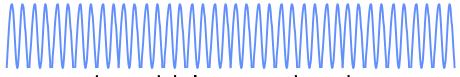
- Characterized by densely networked nodes (sensors, robots, logistics, vehicles, condition-based maintenance..)
- I SSUES: PHYS, MAC, DATALINK, NETWORKING & above
 - -rapid dynamic deployment with minimum human intervention
 - -self-organization guided by high-level constraints (e.g. administrative structure, tasking constraints etc.) rather than today's unconstrained self-organization/clustering for scalability research
 - -trust and security
 - -low-energy wireless and power-aware networking
 - -throw-away low-cost
 - -robust & efficient PHY and MAC layers --> works in urban and other RF non-friendly harsh environment; need improvements over today's csma schemes

Urban Presence & Combat


- Since 1977, US forces have been involved in over 25 major military interventions. 10 in urban environments; 11 in combined urban/rural settings.
- Presently 14,000 U.S. military personnel are deployed in urban environments, mostly in Bosnia and Kosovo.
- Today, half of the world's population lives in urban area. By 2024, the figure is expected to reach 85%.
- Army and USMC estimate urban operations may require nine times the ground forces of operations on open terrain. Grozny casualty rates were 65%; recent MOUT exercises, casualty rates reached 70%.
- Importance of future missions to capture, defend, neutralize within an urban area; also civil support in the US (crisis response)


How is it done today?

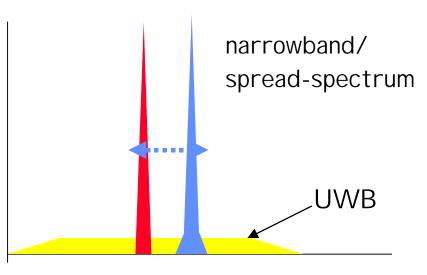

Cellular Infrastructure


harsh multipath environment

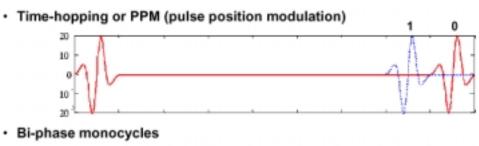
- •destructive interference of RF sinusoids can induce multipath fading and dropouts
- causes intermittency, outages, unidirectionality in networklinks

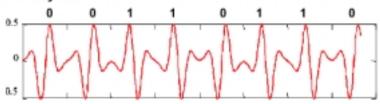
Traditional Wireless: RF PHY

sinusoidal narrowband

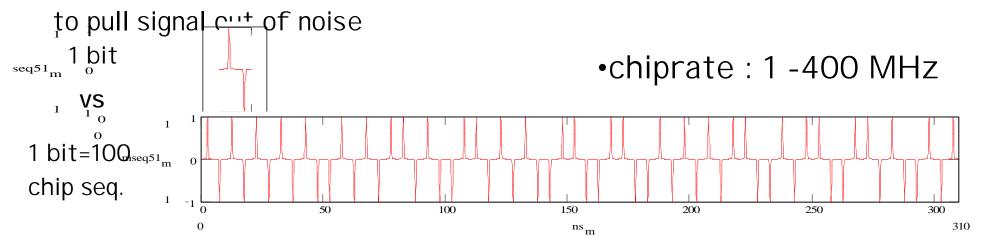

Ultrawideband Networking

short pulse waveforms ("carrier free", "impulse")




- $f_H f_L$ •large fractional bw:
- •broad spectrum : 100's MHz to multi-GHz -LPI
 - -narrowband interference rejection (limited LPJ)

secure waveform (lpd, lpj)


frequency

UWB Fine-Grained Networking

- possible to demonstrate large range or high bw1km or 100 Mbps
- regime of interest for fine-grained networking
 - •short range: 10's to 100's meters
 - •low bit-rate (typically 10 kbps, but can also go up to 10 Mbps)
 - low power operation
- use code and coherent combining/correlating receiver

Hardware Prototype

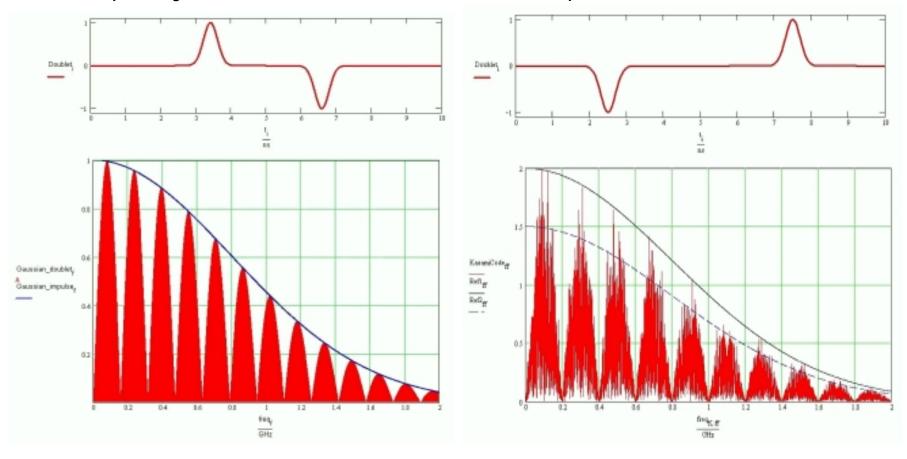
Pager-sized 4th Generation Prototype

Transmit/Receive

- Rx/Controller chip (Aether5)
 - Closed loop sensor
 - Low-noise TCXO
- Tx Antenna Driver chip (Driver2)
 - Large Current Radiator
- External RF amplifier & DAC
- A-to-D converter

Processor

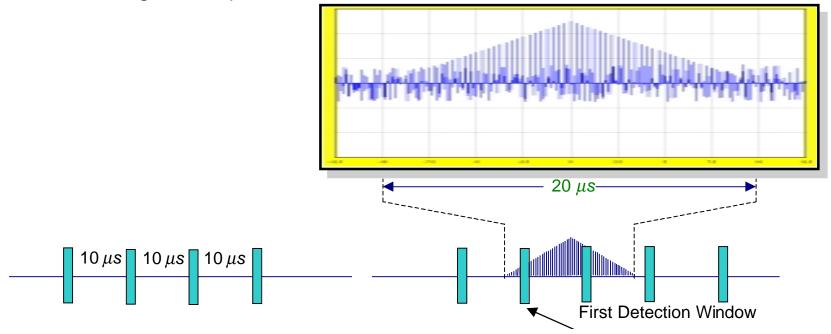
- Motorola ColdFire 5204
- 1MB Static RAM
- 512KB Flash RAM


Power regulation

Aetherwire & Location

Signal Spectrum

• Spectral Nulls chosen by Impulse Separation to notch out selected frequency bands for transmission & reception (*i.e.* GPS)

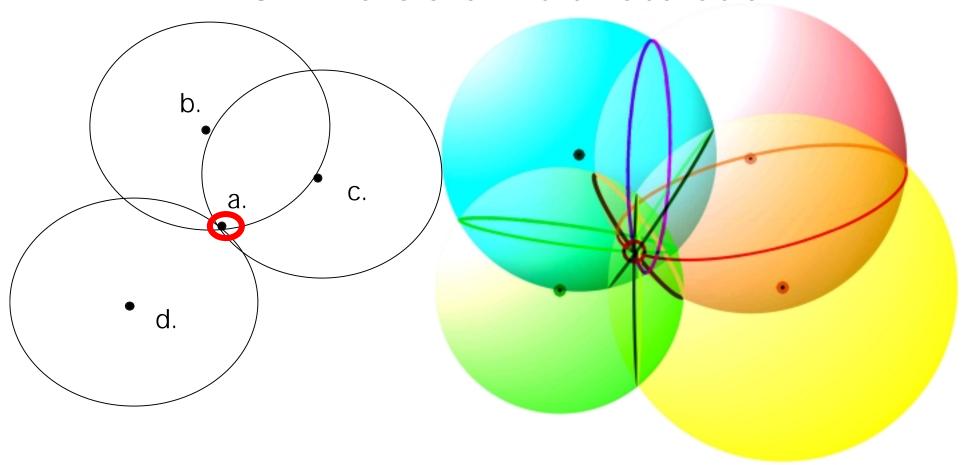

UWB Networking

Algorithms, Protocols, and Distributed Network Control for robust, scalable ad-hoc UWB networking

 $(100,000 - 1 \text{ million nodes in } 1 \text{km}^2)$

Challenges

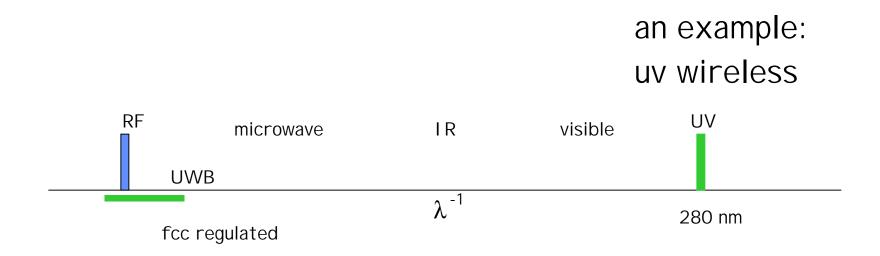
- precision time-based ad-hoc network
- •self-organization & robustness using software controlled adaptation
- modular design and open interfaces to enable 'inter-stack' awareness



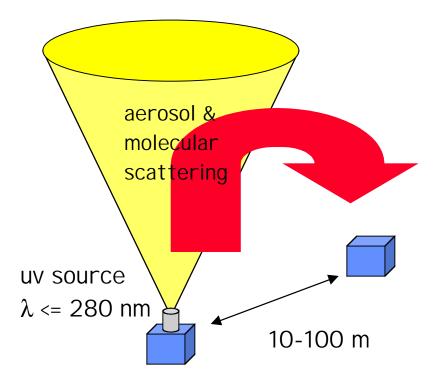
Cooperative Networking

- Position location using inexpensive timebases
 - Quartz crystal or MEMS oscillator
 - 1 ppm (10⁻⁶) with on-chip software-mediated temperature compensation
 - Localizers track each other's clock frequencies for ppb (10-9) matching
 - Absolute position accuracy of entire network is raised to the absolute accuracy of the best oscillator or known distance
- Code & Time Division channelization for a million Localizers per km²
- Multi-hop communication
 - Defeats $1/r^n$ received power reduction ($n \ge 3$)
 - Reduces probability of intercept
- Selective sharing of data over network
- Capable of hiding ranging information (for Security)
 - Synchronization without giving range
 - Spoofing for privacy

Peer-to-peer Network Geo-localization Techniques:


- Pair-wise ranging protocol
- •3-Dimensional Multi-lateration

Alternative, Emerging Wireless Networking PHY Layer


Desired features:

low power, small, potentially low cost secure, difficult to detect (LPD, LPJ) non-line of sight; immunity to multipath immunity to groundwave loss (low elevation signal loss)

Networking in the UV:

atmosphere absorbs and scatters UV

compared to RF:

- non-line-of-sight
- •orders of magnitude lower in transceiver power power
- highly confined signal exponential loss above 0.8km

Detectability from airborne ELINT platform

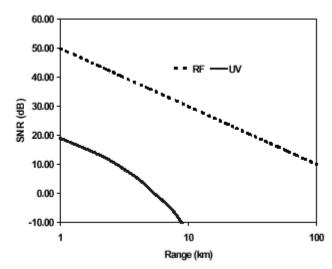


Figure 12. Detectability of UV versus RF ground communication signals from an airborne ELINT platform

Gary Shaw, Aerospace01

Open System Solutions

- systems pull vs technology push
- vertically integrated (point-) solution vs open, generic approach
- e.g. of Systems programs:

self-healing mine, small units -situational awareness, offensive radio jamming, army's Future Combat System